межгосударственный стандарт

Плиты железобетонные для покрытий городских дорог

АРМАТУРНЫЕ И МОНТАЖНО-СТЫКОВЫЕ ИЗДЕЛИЯ

ΓΟCT 21924.3—84

Конструкция и размеры

Reinforced concrete slabs for pavements of city roads. Structure fittings products. Structure and dimensions

OKI 58 4600

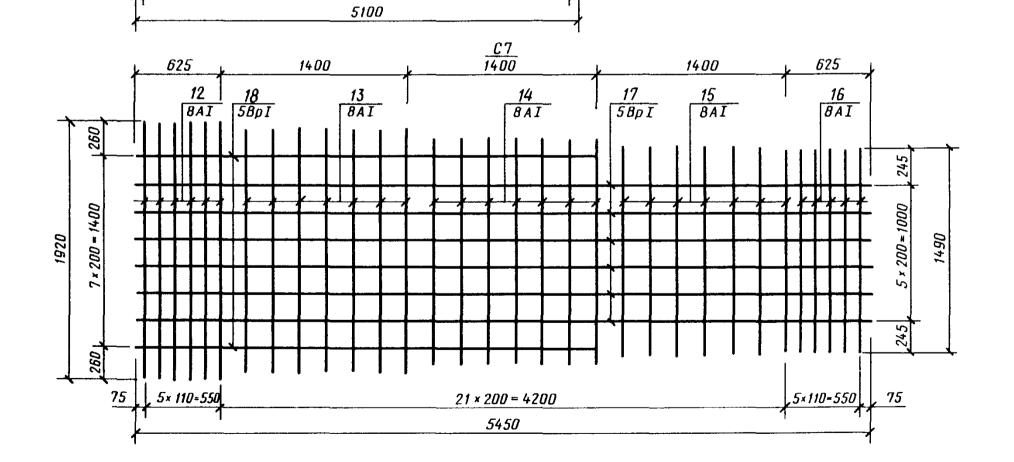
Дата введения <u>01.01.85</u>

- 1. Настоящий стандарт распространяется на арматурные и монтажно-стыковые изделия железобетонных предварительно напряженных плит по ГОСТ 21924.1 и плит с ненапрягаемой арматурой по ГОСТ 21924.2, предназначенные для устройства постоянных и временных городских дорог.
- 2. Форма и размеры арматурных и монтажно-стыковых изделий должны соответствовать указанным на черт. 1—4 и в табл. 1.

П р и м е ч а н и е. При применении термомеханически упрочненной арматурной стали класса Aт-IIIC по ГОСТ 10884 стержнями из этой арматурной стали следует заменять в изделиях стержни из арматурной стали класса A-III тех же диаметров.

- 3. Спецификация и выборка арматурной стали на арматурные и монтажно-стыковые изделия приведены в табл. 2.
 - 2.3. (Измененная редакция, Изм. № 1).
 - 4. В арматурных сетках должны быть сварены все пересечения стержней.
- 5. Соединения стержней в арматурных сетках и каркасах, монтажно-стыковых изделиях следует выполнять контактно-точечной сваркой по ГОСТ 14098.
 - 6. Режимы сварки по СН 393.
 - 7. Технические требования, правила приемки и методы контроля по ГОСТ 21924.0.

С2, С4 и С6

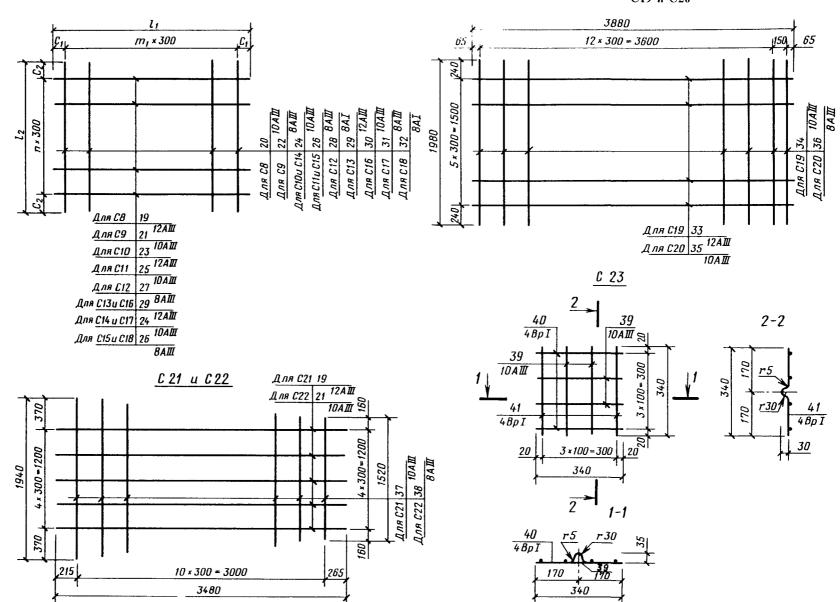

50

C1, C3, C5

<u>50</u>

48

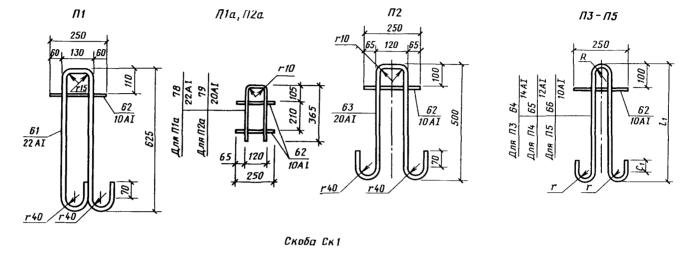
50 × 100 = 5000

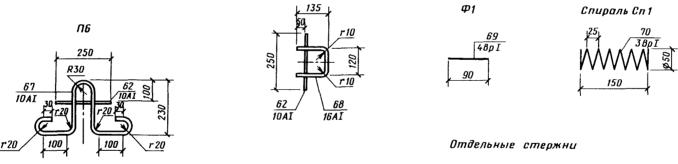


Черт. 1



49


С19 и С20



Черт. 2

Черт. 3

12

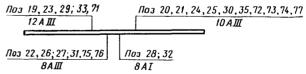


Таблица І

	Размеры, мм									
Марка	<i>l</i> ₁	1,	$m_{_1}$	m_2	п	и	c_{i}	c_2	R	ľ
C1						500	160			
C2	1820					600	10		:	
C3	1700		_			500	100			
C4						560	10			
C5	1950					580	105			
C6						640	15			
C8, C9	3480	2730	10	1	7		240	315	-	
C10, C11, C12	2980	1730	8		4		290	265	1	
C13, C14, C15	1730	1730	4		4	1	265	265	1	
C16, C17, C18	1/30	1480	7		3	1		290		
K1	2600	95	5			55		- 		
K2	7 2000	105				65	1			
K3		95				55				
K4	2100	105	4		Ì	65	_			
K5		110				70				
K6		90 100 3	40	1						
K7	1600					50		_		
K8			3			60				
K9	•	85				45	1			
K10		95				55				
K11	3630		6			195	60			
K12	3025		5			193	50			
K13	3360		6			180	60			
K14	2800		5				50		1	
K15	3630		6	5	1		145			
K16	3025]	5	4		195	135	110		
K17	2360		11				107 (108)			
K18	3360		6	5		100	160	00		
K19	2800		5	4		180	150	80		
K20	2220		11				120	-		
K21	3630		6	2		105	140	115	1	
K22	3025		5	1		195	132 (133)	210		
K23	2130		10]		90			
K24	3360		6	2			145	95		
K25	2800		5	l		180	140	180		
K26	1990		10				95			
П3	495]			50			30
П4	435						30		30	20
П5	370									40

ГОСТ 21924.3-84 С. 7

Таблица 2

		Ссчение,	Длина,		Общая	Macca,	Выборк	а арматурн	ой стали
Марка	Марка Поз	мм	ММ	Число	длина, м	Kr	Сечение,	Масса, кг	Масса изделия, кг
Cl	1	5BpI	5100	4	20,40	2,94	5BpI	16,31	16.21
٥.	2	- John	1820	51	92,82	13,37		_	16,31
	3	8AIII	2540	1	2,54	1,00	8AIII	4,60	4,71
C2	4	OAIII	1820	5	9,10	3;60	5BpI	0,11	4,71
	5		380	2	0,76	0,11		_	
C3	1	5BpI	5100	4	20,40	2,94	5BpI	15,42	15,42
C3	6		1700	51	86,70	12,48	_	_	15,42
-	7	- 8AIII	2420	1	2,42	0,96	8AIII	4,32	
C4	8	OAIII	1700	5	8,50	3,36	5BpI	0,11	4,43
	5		380	2	0,76	0,11	-		
	1	5BpI	5100	4	20,40	2,94	5BpI	17,26	17,26
C5	9		1950	51	99,45	14,32	_		17,20
	10		2670	1	2,67	1,06	8AIII	4,91	
C6	11	- 8AIII	1950	5	9,75	3,85	5Bpl	0,11	5,02
	5	5BpI	380	2	0,76	0,11		_	7
	12		1920	6	11,52	4,55	8AI 5BpI	21,32	
	13		1790		12,53	4,95		5,70	
	14	8AI	1670	7	11,69	4,62			
C7	15		1540		10,78	4,26			27,02
	16		1490	5	7,45	2,94		_	
	17	CD-1	5450	6	32,70	4,71			
	18	- 5BpI	3425	2	6,85	0,99			
	19	12AIII	3480	8	27,84	24,72	12AIII	24,72	42.25
C8	20	10AIII	2730	11	30,03	18,53	IOAIII	18,53	43,25
C9	21	TOATT	3480	8	27,84	17,18	TUATII	17,18	29,04
C)	22	8AIII	2730	11	30,03	11,86	8AIII	11,86	29,04
CIO	23	12AIII	2980	5	14,90	13,23	12AIII	13,23	22.94
C10	24	10AIII	1730	9	15,57	9,61	104111	9,61	22,84
_	25	TOAIII	2980	5	14,90	9,19	10AIII	9,19	15.24
CII	26	- 8AIII	1730	9	15,57	6,15	8AIII	6,15	15,34
CIA	27	OAIII	2980	5	14,90	5,89	OAIII	5,89	12.04
C12	28	8AI	1730	9	15,57	6,15	8AI		12,04
C13	29	12AIII	1730	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		15,36	12AIII	15,36	15,36
C14	24	10AIII	1730	10	17,30	10,67	10AIII	10,67	10,67
C15	26	8AIII	1730			6,83	8AIII	6,83	6,83
	29	12AIII	1730	4	6,92	6,14	12AIII	6,14	
C16	30	10AIII	1480	5	7,40	4,57		4,57	10,71
C17	24	10/1111	1730	4	6,92	4,27	10AIII	4,27	7.10
C17	31	8AIII	1480	5	7,40	2,92	8AIII	2,92	7,19

Продолжение табл. 2

		Committee	Пале		05	Ma	Выборк	а арматурн	ой стали
Марка	Поз.	Сечение, мм	Длина, мм	Число	Общая длина, м	Масса, кг	Сечение,	Масса, кг	Масса изделия, к
C18	26	8AIII	1730	4	6,92	2,73	8AIII	2,73	5,65
C18	32	8AI	1480	5	7,40	2,92	8AI	2,92	3,03
C19	33	12AIII	3880	6	23,28	20,67	12AIII	20,67	37,77
C19	34	IOAIII	1980	14	27,72	17,10	- IOAIII	17,10	
C20	35	10/1111	3880	6	23,28	14,36	TOATT	14,36	25,31
C20	36	8AIII	1980	14	27,72	10,95	8AIII	10,95	23,31
C21	19	12AIII	3480	5	17,40	15,45	12AIII	15,45	27,19
C21	37	10AIII	1940÷ 1520	11	19,03	11,74	10AIII	11,74	27,17
C22	21	1071111	3480	5	17,40	10,74	1071111	10,74	
	38	8AIII	1940÷ 1520	11	19,03	7,52	8AIII	7,52	18,26
	39	10AIII	340	4	1,36	0,84	10AIII	0,84	
C23	40	4BpI	390	2	0,78	0,07	4BpI	0,14	0,98
	41		380	2	0,76	0,07	_		
	42		2600	2	5,20	0,75	5BpI	0,83	
KI	43	1	95	6	0,57	0,08		_	0,83
	42		2600	2	5,20	0,75	5BpI	0,84	
K2	44		105	6	0,63	0,09	_	_	0,84
	45		2100	2	4,20	0,60	5BpI	0,67	2.4-
K3	43	7	95	5	0,48	0,07	_	_	0,67
77.4	45	5BpI	2100	2	4,20	0,60	5BpI	0,68	
K4	44		105	5	0,53	0,08	_	_	7
Y. C	45		2100	2	4,20	0,60	5BpI	0,68	0,68
K5	46		110	5	0,55	0,08	_	_	
77.6	47		1600	2	3,20	0,46	5BpI	0,51	
K6	48		80	4	0,32	0,05			0,51
1/7	47		1600	2	3,20	0,46	5BpI	0,51	
K7	49		90	4	0,36	0,05			
K8	47		1600	2	3,20	0,46	5BpI	0,52	0.52
	50		100	4	0,40	0,06	_	-	0,52
K 9	47		1600	2	3,20	0,46	5BpI	0,51	
	51		85	4	0,34	0,05	_		0,51
K10	47	_	1600	2	3,20	0,46	5BpI	0,51	9,5.
	43		95	4	0,38	0,05			
KII	52	10AIII	3630	2	7,26	4,48	10AIII	4,48	4,70
	53	4BpI	160	15	2,40	0,22	4BpI	0,22	
V12	54	10AIII	3025	2	6,05	3,73	10AIII	3,73	3,91
K12	53	4BpI	160	12	1,92	0,18	4BpI	0,18	
77	55	10AIII	3360	2	6,72	4,15	10AIII	4,15	4,37
K13	53	4BpI	160	15	2,40	0,22	4BpI	0,22	

ГОСТ 21924.3—84 С. 9

Продолжение табл. 2

							Выборк	а арматурн	ой стали
Марка	Поз.	Сечение, мм	Длина, мм	Число	Общая длина, м	Масса, кг	Сечение, мм	Масса, кг	Масса изделия, кг
77.1.4	56	10AIII	2800	2	5,60	3,46	10AIII	3,46	
K14	53	4BpI	160	12	1,92	0,18	4BpI	0,18	3,64
TC15	52	10AIII	3630	2	7,26	4,48	10AIII	4,48	4.70
K15	53	4BpI	160	15	2,40	0,22	4BpI	0,22	4,70
	54	10AIII	3025	2	6,05	3,73	10AIII	3,73	2.01
K16	53	4BpI	160	12	1,92	0,18	4BpI	0,18	3,91
V 17	57	10AIII	2360	2	4,72	2,91		2,91	2.00
K17	53	4BpI	160	12	1,92	0,18	10AIII	0,18	3,09
V10	55	10AIII	3360	2	6,72	4,15		4,15	4.27
K18	53	4BpI	160	15	2,40	0,22	4BpI	0,22	4,37
K19	56	10AIII	2800	2	5,60	3,46	10AIII	3,46	2.64
K19	53	4BpI	160	12	1,92	0,18	4BpI	0,18	3,64
K20	58	10AIII	2220	2	4,44	2,74	10AIII	2,74	2.02
K20	53	4BpI	160	12	1,92	0,18	4BpI	0,18	2,92
K21	52	10AIII	3630	2	7,26	4,48	10AIII	4,48	4.60
K21	53	4BpI	160	14	2,24	0,21	4BpI	0,21	4,69
K22	54	10AIII	3025	2	6,05	3,73	10AIII	3,73	3,88
N22	53	4BpI	160	10	1,60	0,15	4BpI	0,15	3,00
K23	59	10AIII	2130	2	4,26	2,63	10AIII	2,63	2,79
123	53	4BpI	160	11	1,76	0,16	4BpI	0,16	
K24	55	10AIII	3360	2	6,72	4,15	10AIII	4,15	4,36
1724	53	4BpI	160	14	2,24	0,21	4BpI	0,21	4,50
K25	56	10AIII	2800	2	5,60	3,46	IIIA01	3,46	3,61
K23	53	4BpI	160	10	1,60	0,15	4BpI	0,15	3,01
K26	60	10AIII	1990	2	3,98	2,46	10AIII	2,46	2,62
1,20	53	4BpI	160	11	1,76	0,16	4BpI	0,16	7 2,02
П1	61	22AI	1670	1	1,67	4,98	22AI	4,98	5,13
	62	10AI	250	1	0,25	0,15	10AI	0,15	7,13
П1а	<i>78</i>	22AI	850	1	0,85	2,53	22AI	2,53	2,83
	62	10AI	250	2	0,50	0,30	10AI	0,30	2,65
П2	63	20AI	1420	1	1,42	3,51	20AI	3,51	3,66
11.2	62	10AI	250	1	0,25	0,15	10AI	0,15	3,00
П2а	79	20AI	850	l	0,85	2,38	20AI	2,38	2,68
1124	62	10AI	250	2	0,50	0,30	10AI	0,30	2,06
П3	64	I4AI	1260	1	1,26	1,52	14AI	1,52	1,67
113	62	10AI	250	1	0,25	0,15	10AI	0,15	1,07
П4	65	12AI	1060	1	1,06	0,94	12AI	0,94	1,09
	62		250	1	0,25	0,15	1041	0,15	1,07
П5	66	IA0I	930	I	0,93	0,57	10AI	0,72	
	62		250	1	0,25	0,15	-		
П6	67		930	1	0,93	0,57	10AI	0,72	0,72
110	62		250	l	0,25	0,15	_		
Cĸl	68	16AI	360	1	0,36	0,57	16AI	0,57	
CKI	62	10AI	250	!	0,25	0,15	10AI	0,15	

Продолжение табл. 2

Марка Поз.		Сечение,	Лпина	Сечение, Длина,	Общая	Macca,	Выборка арматурной стали			
	мм	мм	Число	длина, м	кг	Сечение, мм	Масса, кг	Масса изделия, кг		
Ф!	69	4BpI	90		0,09	0,01	4BpI	0,01	10,0	
Сп1	70	3BpI	1290		1,29	0,07	3BpI	0,07	0,07	
·	19	12AIII	3480		3,48	3,09	12AIII	3,09	3,09	
	20		2730		2,73	1,68		1,68	1,68	
	21	10AIII	3480		3,48	2,15	10AIII	2,15	2,15	
	22	8AIII	2730		2,73	1,08	8AIII	1,08	1,08	
	23	12AIII	2980		2,98	2,65	12AIII	2,65	2,65	
	24	10AIII	1730		1,73	1,07	10AIII	1,07	1,07	
	25		2980		2,98	1,84		1,84	1,84	
_	26	8AIII	1730		1,73	0,68	8AIII	0,68	0,68	
ж н и	27	0/1111	2980	1	2,98	1,18		1,18	1,18	
ф	28	8AI	1730		1,73	0,68	8AI	0,68	0,68	
٦ و	29	12AIII	1730		.,, 5	1,54	12AIII	1,54	1,54	
၁	30	10AIII	1480			0,91	10AIII	0,91	0,91	
19	31	8AIII	1480		1,48	0,58	8AIII	0,58	0,58	
н а	32	8AI	1480				8AI			
ел	33	12AIII	3880		3,88	3,45	12AIII	3,45	3,45	
ТД	35	IIIA0I	3880		3,00	2,39	10AIII	2,39	2,39	
0	71	12AIII	3490		3,49	3,10	12AIII	3,10	3,10	
	72		1970		1,97	1,22		1,22	1,22	
	73	10AIII	1490		1,49	0,92	10AIII	0,92	0,92	
	74		3490		3,49	2,15		2,15	2,15	
	75	8AIII	1970		1,97	0,78	8AIII	0,78	0,78	
	76	071111	1490]	1,49	0,59		0,59	0,59	
	77	IOAIII	550		0,55	0,34	10AIII	0,34	0,34	

 Π р и м е ч а н и е. Для арматурной стали класса Aт-IIIC сечение, длину и массу следует принимать одинаковыми с арматурной сталью класса A-III.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством жилищно-коммунального хозяйства РСФСР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по делам строительства от 30.09.83 № 210
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта				
ГОСТ 10884—94	2				
ΓOCT 14098—94	5				
FOCT 21924.0—84	7				
FOCT 21924.1—84	1				
ΓOCT 21924.2—84	1				
CH 393—78	6				

5. ИЗДАНИЕ (март 2002 г.) с Изменением № 1, утвержденным в декабре 1987 г. (ИУС 5-88)

Редактор В. П. Огурцов
Технический редактор Н. С. Гришанова
Корректор С. И. Фирсова
Компьютерная верстка В. Н. Романовой

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 30.01.2002. Подписано в печать 22.04.2002. Усл. печ. л. 6,51. Уч.-изд. л. 6,45. Тираж 203 экз. С 5242. Зак. 494.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер , 14. http://www.standards.ru e-mail: info@standards.ru Набрано в Калужской типографии стандартов на ПЭВМ. Калужская типография стандартов, 248021 Калуга, ул. Московская, 256. ПЛР № 040138